PENERAPAN METODE ADAPTIVE NEURO FUZZY INFERENCE SYSTEM UNTUK PENENTUAN SISWA PENERIMA KARTU INDONESIA PINTAR
Keywords:
Indonesia Smart Card, Anfis, Fuzzy logic.Abstract
Abstract
The Smart Indonesia Card is part of President Joko Widodo's policy for vulnerable and poor poor families who want to provide good education to children without fees. The age of the child is borne by the cost of education is from the age of 6 to 18 years. With this KIP program, it is expected that the dropout rate it can go down drastically. Subjectivity can occur in decision making as a result of inaccurate data. So that there is unclear decision making based on the description, so we need a system to facilitate the determination of students who are entitled to use the Indonesia Smart Card where decisions are at school, the researchers use the Adaptive Neural Fuzzy Inference System (ANFIS) method to create a system after inputting data on certain variables which will result in whether students have the right to be considered for KIP or not. Tests show that the type of membership function with a hybrid algorithm with the input parameter "trimf" or triangle can produce the level of guess closest to the real conditions in the field, with Root Mean Square Error 9.6902e-007.
Downloads
References
Ellis, Frank 1998. Household Strategies and Rural Livehood Diversification, The Journal of Development Studies, Vol. 35, No.1
Fuzzy Logic Toolbox for Use with MATLAB. Math Works. 2001.
https://indonesiapintar.kemdikbud.go.id/
Hamdan, H. and Garibaldi, J. M. 2010. ‘Adaptive neuro-fuzzy inference system (ANFIS) in modelling breast cancer survival’, 2010 IEEE World Congress on Computational Intelligence, WCCI 2010, pp. 18–23. doi: 10.1109/FUZZY.2010.5583997.
H.Zhou. 2011. Member IEEE, X.H.Wu and X.G.Li, An ANFIS model of Electricity Price Forecasting Based on Subtractive Clustering.
Info Kajian Bappenas Vol.8 No.2 Desember 2011. "Daya Saing, Penanggulangan Kemiskinan dan Kesejahteraan Masyarakat". Jakarta
Junaedi, A. 2010. Fuzzy Logic Untuk Deteksi Diabetes. 10.
Kuncoro, Mudrajat. 2000. Ekonomi Pembangunan, Teori Masalah dan Kebijakan. Yogyakarta: Penerbit UPP AMO YKPN Inderscience Enterprises Ltd
Kusrini. 2007. Konsep dan Aplikasi Sistem Pendukung Keputusan. Yogyakarta: ANDI
Kusumadewi, Sri., & Hartati, Sri. 2010. Neuro-Fuzzy Integrasi Sistem Fuzzy Jaringan Syaraf. Yogyakarta: Graha Ilmu.
Kusumadewi, Sri., Purnomo, Hari. 2010. Aplikasi Logika Fuzzy Untuk Pendukung Keputusan. Yogyakarta: Graha Ilmu.
Kusumadewi, S. 2014. ‘Sistem Inferensi Fuzzy ( Metode Tsk ) Untuk Penentuan Kebutuhan Kalori Harian’, Universitas Islam Indonesia Yogyakarta.
Kusumadewi, S. and Guswaludin, I. .2005. ‘Fuzzy Multi-Criteria Decision Making’, Media Informatika, 3(1), pp. 25–38. doi: 10.1007/978-0-387-76813-7.
Kusumadewi, S. and Hartati, S. 2007. ‘Utilizing Fuzzy Multi-Attribute Decision Making for Group Clinical’, pp. 18–23.
Naba, Agus. 2009. Belajar Cepat Fuzzy Logic Menggunakan Matlab. Yogyakarta: Andi
Nor EleenaYusoff, Zaidah Ibrahim, Syed Ahmad Aljunid. Application of beck Propagation Neural Network And Anfis Forecasting University Programs. 2010 2010 International Conference on Science and Social Research (CSSR 2010), December 5-7, 2010, Kuala Lumpur, Malaysia
