FRAUD ANALYSIS USING THE BENEISH RATIO INDEX METHOD IN MINING SUB-SECTOR COMPANIES LISTED ON THE IDX IN 2020 – 2025
Keywords:
financial statement fraud, Beneish M-Score, financial ratios, mining subsector, Indonesia Stock ExchangeAbstract
This study aims to detect indications of financial statement fraud in mining sub-sector companies listed on the Indonesia Stock Exchange (IDX) during the 2020–2025 period using the Beneish Ratio Index (Beneish M-Score). This study employs a descriptive quantitative approach utilizing secondary data in the form of the companies' annual financial reports. The analysis is conducted by calculating eight Beneish ratios: the Days Sales in Receivables Index (DSRI), Gross Margin Index (GMI), Asset Quality Index (AQI), Sales Growth Index (SGI), Depreciation Index (DEPI), Sales General and Administrative Expenses Index (SGAI), Leverage Index (LVGI), and Total Accruals to Total Assets (TATA), to classify companies into non-manipulators, gray companies, and manipulators. The results indicate that not all mining sub-sector companies fell into the non-manipulators category during the observation period. Several companies were identified as manipulators or gray companies in certain years, indicating the potential for less than fair presentation of financial statements. The DSRI, GMI, AQI, and SGI ratios were the most sensitive indicators in detecting potential manipulation. These findings confirm that the Beneish M-Score method is effective as an early warning system, but cannot be used as definitive evidence of fraud. This research is expected to contribute to the development of accounting literature and provide consideration for auditors, regulators, and investors in improving the quality of transparency and accountability of financial reporting in the mining sector.
Downloads
References
Agoes, S. (2021). Auditing: Petunjuk Praktis Pemeriksaan Akuntan oleh Akuntan Publik. Jakarta: Salemba Empat.
Andayani, R. (2023). Fraud dan Manipulasi Laporan Keuangan: Perspektif Akuntansi Modern. Yogyakarta: Andi.
Arifin, M., & Wulandari, S. (2023). Earnings Management in Mining Companies During Commodity Price Fluctuation. Jurnal Akuntansi dan Keuangan Indonesia, 20(2), 145–160.
Association of Certified Fraud Examiners. (2022). Report to the Nations on Occupational Fraud and Abuse. ACFE.
Beneish, M. D. (1999). The Detection of Earnings Manipulation. Financial Analysts Journal, 55(5), 24–36.
Beneish, M. D., Lee, C., & Nichols, D. (2020). Detecting Earnings Manipulation Revisited: Data Mining, Measurement Errors, and Empirical Power. Contemporary Accounting Research, 37(3), 1496–1524.
Chen, Y., Zhang, H., & Li, X. (2022). Financial Statement Fraud and Earnings Manipulation: A Review of Global Evidence. Journal of International Accounting Research, 21(1), 88–102.
Lestari, T., & Nugroho, B. (2024). Risiko Fraud dalam Industri Pertambangan: Analisis Faktor Internal dan Eksternal. Jurnal Akuntansi Multiparadigma, 15(1), 55–70.
Pramesti, D., & Hapsari, I. (2023). Efektivitas Beneish M-Score dalam Mendeteksi Manipulasi Laba pada Perusahaan Publik di Indonesia. Jurnal Akuntansi dan Auditing Indonesia, 27(1), 12–25.
Rezaee, Z. (2023). Financial Statement Fraud: Prevention and Detection (3rd ed.). New York: Wiley.
Santoso, A. (2022). Analisis Model Beneish untuk Mendeteksi Kecurangan Laporan Keuangan pada Emiten Sektor Pertambangan. Jurnal Riset Akuntansi Terapan, 6(2), 101–115.
Sihombing, E., & Rahardjo, P. (2020). Fraud Triangle dan Financial Statement Fraud: Studi Empiris pada Perusahaan Publik. Jurnal Akuntansi dan Keuangan, 22(1), 17–30.
Tuanakotta, T. M. (2021). Audit Berbasis Risiko: Pendekatan Integratif untuk Mendeteksi Fraud. Jakarta: Salemba Empat.
Wells, J. T. (2021). Corporate Fraud Handbook: Prevention and Detection (6th ed.). Hoboken: John Wiley & Sons.
Wolfe, D., & Hermanson, D. (2021). The Fraud Diamond: Evolution and Contemporary Relevance. Journal of Forensic Accounting Research, 6(1), 1–14.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
